Zadanie 1
pdf > do ÂściÂągnięcia > download > ebook > pobieranie
 
Cytat
Ab igne ignem - z ognia ogień. (Cycero). (Cycero)
Start Zaćmienie, Zajecia 2, zaaowanane,
 
  Witamy

Zadanie 1, szkoła, wytrzymałosc
[ Pobierz całość w formacie PDF ]
3U]\NáDG:\]QDF]HQLHQDSU
*
HRGNV]WDáFHLSU]HPLHV]F]HZVáXSLH
o zmiennym przekroju
:\]QDF]\üUR]NáDG\VLá\QRUPDOQHMQDSU
*
HRGNV]WDáFHLSU]HPLHV]F]HZ\ZRáDQH
FL*DUHPZáDVQ\P
>1P
3
@SUWDRVNRNRZR]PLHQQ\PSU]HNURMXSU]HGVWDZLRQ\PQD
U\VXQNX0DWHULDáSUWDMHVWMHGQRURGQ\R]QDQ\PPRGXOH
Younga E [N/m
2
], pole przekroju
2A
H
ci
*DU
w
áDVQ\
2H
A
Z\]QDF]HQLHVLá\QRUPDOQHM1
2EFL*HQLHFL*DUHPZáDVQ\P]UHGXNRZDQHGRRVLSUWDGDMHOLQLRZHREFL*HQLHRVLRZH
RQDW*HQLX Q[
$[ 3RQLHZD* SU]HNUyM SUWD ]PLHQLD VL ZLF REFL*HQLH WR EG]LH
PLDáRZDUWRFLSU]HG]LDáDPLVWDáH
n
1
$
n
2
$
'RZ\]QDF]HQLDVLá\QRUPDOQHMZSURZDG]LP\SU]HNURMHZ\]QDF]RQHU]GQ\PL
x
1
i
x
2
(jak na
U\VXQNX 2GG]LHORQH W\PL SU]HNURMDPL F]FL ] LFK FL*DUDPL RUD] X]HZQWU]QLRQ VLá
SU]HNURMRZ1SU]HGVWDZLDU\VXQHNSRQL*HM
F]ü,,
n
2
=
2A
N(
x
2
)
x
2
x
2
F]ü,
n
1
=
A
N(
x
1
)
G
2
=
2A(H-
x
2
)
x
1
x
1
G=
A2H
G
1
=
A(3H-
x
1
)
=ZDUXQNXUyZQRZDJLVLáGODWDNZ\G]LHORQHMF]FL,]QDMGXMHP\ZDUWRüVLá\QRUPDOQHM
N(x
1
) w dowolnym przekroju dla
x
1
]SU]HG]LDáX++
å
3
L[
N(
x
1
) – G
1
LVWG1
x
1
$+±
$
x
1
.
=
Þ
1
R]QDF]DFL*DUF]FLSUWDRGFLWHMSU]HNURMHPNWyU\REOLF]RQ\]RVWDáMDNRLORF]\Q
FL*DUXREMWRFLRZHJR
LREMWRFLWHMF]FLLORF]\QREFL*HQLDQ
x
1
).
W przekroju
x
1
+NRQLHF]QHMHVWXZ]JOGQLHQLH]PLDQ\QDW*HQLDREFL*HQLDNWyUDZ\QLND
]H ]PLDQ\ SROD SRZLHU]FKQL SU]HNURMX SRSU]HF]QHJR SUWD :SURZDG]DP\ Z W\P FHOX
]PLHQQ
1
LRGOHJáRFL
x
2
.
poprzecznego A[m
2
@LGáXJRü+>P@
5R]ZL]DQLH
·
6LáD*
=ZDUXQNXUyZQRZDJLVLáGODWDNZ\G]LHORQHMF]FL,,]QDMGXMHP\ZDUWRüVLá\QRUPDOQHM
N(x
2
) w dowolnym przekroju dla
x
2
]SU]HG]LDáX+
å
3
L[
N(
x
2
) – G – G
2
LVWG1
x
2
$+
$+±
x
2
$+±
x
2
).
=
Þ
6LáD*R]QDF]DFL*DUF]FLSUWDRSROXSRZLHU]FKQLSU]HNURMXSRSU]HF]QHJRUyZQ\P$D
G
2
±FL*DUIUDJPHQWXF]FLSUWDRSROXSRZLHU]FKQLSU]HNURMXSRSU]HF]QHJRUyZQ\P$
RGG]LHORQHJRU]GQ
x
2
.
1DMZLNV]ZDUWRüVLáDQRUPDOQDRVLJDGOD
x
2
LZ\QRVL
$+
:\NUHVVLá\QRUPDOQHMSU]HGVWDZLDU\VXQHNSRQL*HM
N
4
AH
2
AH
-DN Z\QLND ] Z\NUHVX QDFK\OHQLH Z\NUHVX VLá\ QRUPDOQHM MHVW SURSRUFMRQDOQH GR SROD
SRZLHU]FKQLSUWDSU]\VWDá\PFL*DU]H
Z\]QDF]HQLHQDSU*HQRUPDOQ\FK1
1DSU*HQLHZ\ZRáDQHVLáQRUPDOQUR]áR*RQHMHVWUyZQRPLHUQLHZFDá\PSU]HNURMXLMHJR
ZDUWRüRNUHORQDMHVW]DOH*QRFL
=
1
( )
( )
.
³
[
$
[
= XZDJL QD ]PLHQQ\ SU]HNUyM SUWD NRQLHF]QH MHVW UR]ZD*HQLH GZyFK SU]HG]LDáyZ
]PLHQQRFL,WDN
dla
x
]SU]HG]LDáX+
x
=
1
( )
2
=
£
$+
-
£
$
[
=
-
x
³
2
£
+
2
$
$
i dla
x
]SU]HG]LDáX++
=
1
( )
=
£
$
(
+
-
[
)
=
(
-
)
.
³
[
£
+
[
$
$
:\NUHVQDSU*HQRUPDOQ\FKSU]HGVWDZLRQ\MHVWQDU\VXQNXSRQL*HM
2
H
1
H
2
H
:D*Q\PZQLRVNLHPRGF]\WDQ\P]Z\NUHVXMHVWMHGQDNRZHQDFK\OHQLHZ\NUHVyZZREX
SU]HG]LDáDFKFRR]QDF]D*H]PLHQQRüQDSU*HQLH]DOH*\RGSRODSRZLHU]FKQLSU]HNURMXD
2
·
[
x
[
MHG\QLH RG ZDUWRFL FL*DUX ZáDVQHJR 1LHFLJáRü Z\NUHVX QDSU*H Z SU]HNURMX
x
1
=H
Z\QLND]QLHFLJáRFLVNRNRZHM]PLDQ\SU]HNURMXSUWDZW\PPLHMVFX
Z\]QDF]HQLHRGNV]WDáFH0
2GNV]WDáFHQLD0RGSRZLDGDMFHQDSU*HQLRP1RNUHODSUDZR
Hoocke’a
=
³
[
,
Younga.
¥
[
JG]LH(R]QDF]DPRGXá
(
5R]NáDG RGNV]WDáFH Z]GáX* GáXJRFL SUWD MHVW WDNL MDN QDSU*H ]PQLHMV]RQ\ SU]H]
PQR*QLN(
:\GáX*HQLHSUWDRGáXJRFL/REOLF]DP\MDNR
L
D
L
=
ò
e
(
x
)
d
x
.
o
:\GáX*HQLHDQDOL]RZDQHJRSUWDZ\QRVLüEG]LH
+
+
D
/
=
ò
³
x
2
G
x
2
+
ò
³
x
1
G
x
1
.
(
(
R
+
8Z]JOGQLDMFREOLF]RQHZF]HQLHMQDSU*HQLDRWU]\PXMHP\FDáNRZLWHZ\GáX*HQLHUyZQH
+
(
)
+
D
=
ò
-
x
x
+
ò
-
x
x
=
£
+
+
£
+
=
£
+
.
/
£
+
2
G
2
£
+
1
G
1
(
(
(
(
(
+
Z\]QDF]HQLHSU]HPLHV]F]HX
3U]HPLHV]F]HQLHSU]HNURMXSRáR*RQHJRZRGOHJáRFL[RGVZRERGQHJRNRFDSUWDEG]LH
UyZQHZ\GáX*HQLXF]FLSUWDOH*FHMSRZ\*HMWHJRSU]HNURMX
H
x
u
(
x
1
)
=
D
l
(
x
1
)
=
ò
e
(
x
2
)
d
x
2
+
ò
e
(
x
1
)
d
x
1
.
0
H
[
X
x
2
=
D
O
x
2
=
ò
¥
x
2
G[
.
3RGVWDZLDMF]QDQHMX*RGNV]WDáFHQLDRWU]\PDP\UyZQDQLDSU]HPLHV]F]H
w przedziale (0, H)
[
-
x
(
)
x
=
ò
£
+
2
x
=
£
x
-
x
.
X
2
G
2
+
2
2
(
(
w przedziale (H, 3H)
+
(
-
x
)
[
(
-
x
)
£
+
2
£
+
1
x
=
ò
x
+
ò
x
=
X
1
G
2
G
1
(
(
+
£
+
£
ç
è
x
1
÷
ø
£
ç
è
x
1
÷
ø
=
+
x
-
-
=
x
-
-
1
1
ç
+
+
÷
ç
+
+
÷
(
(
(
3
·
·
æ
ö
æ
ö
 2F]\ZLVWH MHVW*H SU]HPLHV]F]HQLH NRFD VZRERGQHJR SUWD SRZLQQR E\ü LGHQW\F]QH ]
ZF]HQLHM REOLF]RQ\P FDáNRZLW\P Z\GáX*HQLHP 3RGVWDZLDMF
x
1
=3H w równaniu
SU]HPLHV]F]HRWU]\PXMHP\SRWZLHUG]HQLH*H
x
=
=
£
è
-
-
ø
=
£
+
.
X
+
+
+
+
(
(
5yZQLHRF]\ZLVW\PVSUDZG]HQLHPMHVWEUDNSU]HPLHV]F]HQLDNRFD]DPRFRZDQHJR
3RGVWDZLDMF
x
2
U]HF]\ZLFLHRWU]\PXMHP\
X
x
2
=
=
.
:\NUHVSU]HPLHV]F]HSRND]DQ\MHVWQDSRQL*V]\PU\VXQNX
u
3
H
2
2E
7
H
2
2E
Zestawienie wykresów
N
2
H
1
2
H/E
0
u
4
AH
H
H/E
3
H
2
/2E
2
AH
2
H
2
H/E
7
H
2
/2E
4
æ
ö
[ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • imikimi.opx.pl
  • comp
    StartZadanie z Zarządzania Transportem Miejskim i Regionalnym, PG, PG sem. II mgr, Zarządzanie transportem miejskim i regionalnym, GrulkowskiZadania wypracowań - Historia Sztuki(1), Historia sztukiZadania Algebra, AlgebraZadania-Gothic I, Gothic IZadania wantuch + rozw, Elektrotechnika AGH, Semestr III zimowy 2013-2014, semestr III, semestr III, Teoria obwodów 2zadanie7a, MAMA, Praca dyplomowa, Nowy folder, Nowy folderZadania-teoria-sprezystosci-1, Studia, IMIR- MIBM, V rok, Teoria sprezystosciZadania (zestawy I-VI), Download Gry & Pomoce Naukowe, WIP (mgr) pomoce naukowe, KIDMUZadania z mechaniki 1, Politechnika, MechanikaZadania chemia, studia, Chemia
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • kranzfafka.pev.pl
  • Cytat

    Filozof sprawdza się w filozofii myśli, poeta w filozofii wzruszenia. Kostis Palamas
    Aby być szczęśliwym w miłości, trzeba być geniuszem. Honore de Balzac
    Fortuna kołem się toczy. Przysłowie polskie
    Forsan et haec olim meminisse iuvabit - być może kiedyś przyjemnie będzie wspominać i to wydarzenie. Wergiliusz
    Ex Deo - od Boga.

    Valid HTML 4.01 Transitional

    Free website template provided by freeweblooks.com